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Background

Modern developments in natural language processing are s ll bad at doing anything that involves

the hierarchical structures that people use, with most neural models such as recurrent neural net-

works (RNNs) being linear from end-to-end. A good language representa on model should be

capable of encoding hierarchical linguis c structure. However, bag-of-words seman c vector rep-

resenta ons like LSA and Word2Vec fail to encode any structure outside of word order. Further,

the Word2Vecs views finding appropriate vector representa ons as an op miza on problem, is

excep onally computa onally expensive, and introduces a batch process into the data flow.

Using random indexing and high-dimensional, sparse distributed vectors [2] enables many fea-

tures that align with linguis c intui on: concepts can be connected by short links in seman c

space because all vectors are quasiorthogonal, there is a high degree of tolerance for noise, and

analogical reasoning is possible through using Holographic Reduced Representa ons.

Further, there has been increasing evidence for the existence of high-dimensional, sparse binary

vectors in biological organisms. For example, in fruit fly olfactory circuits, 50-dimensional odorant

receptor neurons (ORNs) in the fly's nose are connected to neurons that project to 2,000 Kenyon

cells by sparse, binary random connec onmatrices [1]. It has also been shown that the cerebellum

uses sparse, dimensionality expanding encoding, with large numbers of granule cells receiving few

inputs from "mossy fibers" and Purkinje cells receiving tens of thousands of inputs from "parallel

fibers" and a "climbing fiber".

Method

In order to associate composi onal structures in distributed representa ons, convolu on algebra

is used to form Holographic Reduced Representa ons [5] of word embeddings.

Symmetry preserva on in convolu ons allows the degree of similarity between two vectors to

be conserved when both are bound with the same binding. For example, if vectors for "red"

and "green" are similar, then the bindings red ⊕ apple and green ⊕ apple would also be similar

by approximately the same degree. This symmetry preserva on property is important because it

allows us to draw analogies between two word vectors based on similarity of fields.

Superimposing large numbers of bindings can cause inference that increases the amount of noise

resul ng vectors have. Interference can be mi gated by increasing the number of dimensions

used for the binary vector.

Encoding & Decoding

Encoding The encoding process uses superposi on and binding to bind vectors into a

"memory trace", using addi on and xor respec vely. For example, the pa ern

(yellow ⊕ banana) + (red ⊕ apple) can be used to represent the composi on of two pairs

"yellow-banana and red-apple".

Decoding The decoding process applies inverse convolu on opera ons on a memory trace

and a single field to return a noisy version of what was associated with the field. For

example, yellow−1 ⊕ yellow ⊕ banana ≈ banana. In our case, the xor operator is inver ble

(xor is its own inverse). Because the result is noisy, the dot-product is then used to find its

the closest associa on in memory space.

GeneratingWord Embeddings

Newly encountered words are generated a d dimensional random, binary vector containing −1s
and 1s (using −1 and 1 lets us use the mul plica on operator for xor) that is stored as an envi-

ronment vector ei. Each newly generated word addi onally is given a memory vector mi that is

the linear combina on of the environment vectors of surrounding words mul plied by their part

of speech si and their structural rela onship ri (each of which is also symbolically represented by

a d dimensional random, binary vector of −1s and 1s).

The structural rela onship ri is encoded as the movements needed to move from one word to

another on the parse tree hierarchically. For example, the movement required to move from one

leaf node to an adjacent leaf node when they have the same parent would be "up, down", which

would be encoded as "10". Similarly, if moving from one word to another requires moving up the

tree twice and then moving down three mes, then the movement would be encoded as "11000".

These movements are symbolically represented by d dimensional random, binary vectors consist-

ing of −1s and 1s.

The word embedding rules are summarized as follows:

cj =
n∑

i=1
ei ⊕ si ⊕ ri (1)

mi = mi + cj (2)

Analogous Structures

The symmetry preserva on property in convolu ons allows us to apply analogical reasoning using

the word embedding structure. For example, if we want to find "m1 is to e2 as m2 is to what?"

given the following word embeddings:

m1 : e2 :: m2 :?
m1 = (e1 ⊕ s1 ⊕ r1) + (e2 ⊕ s2 ⊕ r2)
m2 = (e3 ⊕ s1 ⊕ r1) + (e4 ⊕ s2 ⊕ r2)

If we mul ply the two memory vectors together, we get:

Fm1,m2 = (e1 ⊕ e3) + (e2 ⊕ e4) + noise

Taking this composi onal vector, if we further mul ply Fm1,m2 by e2 to complete our analogy, we

get:

Fm1,m2 ∗ e2 = noise + e4 + noise

Finally, we use the dot product to find the closest environment vector e4 to complete the analogy

that m1 : e2 :: m2 : e4.

Experiment

We used random indexing and 100, 000 dimensional vectors to generate word embeddings from

the Penn Treebank. Once the vector representa ons have been generated, we probe represen-

ta ons for analogies in the form "a is to b as c is to what?" (a : b :: c :?) by mul plying seman c

vectors together as described in the method sec on: a ∗ b ∗ c =?. Retrieving each vector used in

the mul plica on from memory space takes O(1) me. Once the noisy resultant vector is found,

using the dot product to compare it against stored word embeddings runs in O(n) me with n
being the number of words stored. All this we were able to do through direct manipula on of the

word embedding representa ve structure, en rely online and without any training process.

For the purpose of reproducibility, we've released our implementa on at

github.com/yczeng/seman c-composi on.

Results and Discussion

Gold Standard Parse Trees for 1,000 sentences from the Bri sh Na onal Corpus were used to

generate word embeddings. Some results are shown in the table below:

m1 s2 m2 ?

shoes socks mosses ferns

canoes fleet elephants herd

resonant frequency magne c field

basked glow luxuria ng feel

Table 1: Analogy where m1 is to s2 as m2 is to what?

Unlike exis ng methods for genera ng word embeddings such as Word2Vec that uses a batch

training process, using high dimensional vectors and random indexing is computa onally inexpen-

sive, online, and robust against noise. However, these word embeddings remain a sta c repre-

senta on, so no learning is going on. It would be interes ng to see how these word embeddings

could interact in a dynamic manner to self-organize and update.
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