

Eh seat seam 9HI o ft
l

G
y

lo

t t t l t 12

T

O

6.004 Spring 2021 Worksheet - 1 of 9 - L13 – Design Tradeoffs

Note: A subset of problems are marked with a red star («). We especially encourage you to try
these out before recitation.

Note: These problems mainly seek to cover the concepts in lecture by implementing them in
Minispec. This will be useful for labs, but we won’t ask you to write this much code in the quiz.

Problem 1. «

The following Minispec function implements a combinational circuit that adds four 32-
bit numbers:

typedef Bit#(32) Word;

function Word add4(Vector#(4, Word) x);
 return x[0] + x[1] + x[2] + x[3];
endfunction

(A) Draw the maximum-throughput 2-stage pipeline for this circuit.

(B) Implement this 2-stage pipeline as a Minispec module by implementing the rule

below. Assume the producer and consumer give and take one input and output every
cycle, so no valid bits or stall logic are needed.

module PipelinedAdd4;
 RegU#(Vector#(2, Word)) pipeReg1;
 RegU#(Word) pipeReg2;
 input Vector#(4, Word) in;
 method Word out = pipeReg2;

 rule tick;

 endrule
endmodule

6.004 Tutorial Problems
L13 – Design Tradeoffs in Sequential Circuits

I

Iet
y L

To

a
T.is I EoyIE7tE7 axox

EE9 fits Noe
pftpe.TL

p.pepyCoJtPipeRgKD

tu
p

6.004 Spring 2021 Worksheet - 2 of 9 - L13 – Design Tradeoffs

(C) Complete the skeleton code below to implement a 2-stage pipeline with valid bits (but
no stall logic).

module PipelinedAdd4;
 Reg#(Maybe#(Vector#(2, Word))) pipeReg1(Invalid);
 Reg#(Maybe#(Word)) pipeReg2(Invalid);

 input Maybe#(Vector#(4, Word)) in default = Invalid;
 method Maybe#(Word) out = pipeReg2;

 rule tick;

 endrule
endmodule

d

so

11Stage I
it is Valid in begin
Vector 4 w d x fromMayhel in

pipeRglCo Valid x o cXCD
pipeRegill

Valid XCzdtXC3J
end else pperky Invalid

Hseage 2
if isvalid pipeReg111begin

clear 12Ward X fromMaybe pipeRg

p.peRegi Valid xcot xc.gg

Jg
end else pipeRep2 Invalid

s

VE hit11 1
island isvalid

pipargl
in e

6.004 Spring 2021 Worksheet - 3 of 9 - L13 – Design Tradeoffs

(D) Complete the skeleton code below to implement a 2-stage pipeline with valid bits and
stall logic. Your pipeline should make progress if one of the stages has an invalid
value.

module PipelinedAdd4;
 Reg#(Maybe#(Vector#(2, Word))) pipeReg1(Invalid);
 Reg#(Maybe#(Word)) pipeReg2(Invalid);

 input Maybe#(Vector#(4, Word)) in default = Invalid;
 method Maybe#(Word) out = pipeReg2;

 input Bool stallIn default = False;

 // User module will stall producer if
 // stall input is set and pipeline is full
 method Bool isFull

 = ___;

 rule tick;

 endrule
endmodule

isValid pipeRg1 Sf isValid copipeRye2
Bool State2 Stall In ff isValidpipeReg2

3 BY.ge
m staYHiSpdaEEig

it Start1 beginTiffisValid in 1 begin
Vector 4 ward x fromMaybeC in

von USED Di

gnppum.gg EfEIfIu9a pipergieu

if471in 2 beenitliquefied 49,9947 7Eannaiac pinergh
pipeReg2 E Valid XM 1 93

enqend else
pipeRef2 Invalid

he FEET.IE rat
semi isigid

ftp.vpapgdid
7

Stall2

2 cycles

r U
D
Al D o

ite
neigefremitus

6.004 Spring 2021 Worksheet - 4 of 9 - L13 – Design Tradeoffs

Problem 2. «

In lecture, we have seen how to increase throughput with pipelining. But we cannot easily
pipeline multi-cycle sequential circuits. To increase throughput in this case, we can
instead use several multi-cycle circuits in parallel.

Consider the Factorial module from the L11 worksheet (reproduced below for
completeness, although you do not need to understand its internals, only its interface):

module Factorial;
 Reg#(Bit#(16)) x(0);
 Reg#(Bit#(16)) f(0);

 input Maybe#(Bit#(16)) in default = Invalid;

 rule factorialStep;
 if (isValid(in)) begin
 x <= fromMaybe(?, in);
 f <= 1;
 end else if (x > 1) begin
 x <= x - 1;
 f <= f * x;
 end
 endrule

 method Maybe#(Bit#(16)) result =
 (x <= 1)? Valid(f) : Invalid;
endmodule

We want to implement a module MultiFactorial that uses two copies of the
Factorial module to improve throughput. MultiFactorial has a similar interface to
Factorial: it has a Maybe input enqueue that, when set to Valid, starts a new
factorial computation, and a Maybe output result, which is Valid when there is a new
factorial result.

However, MultiFactorial can perform up to two computations in parallel: the module
user can give up to two Valid inputs (over different cycles), and the module will return
their outputs through the result method, in the same order that the inputs were given.

Under the covers, MultiFactorial should implement this behavior by alternating
computations between its two Factorial submodules, f[0] and f[1].

Since there are multiple computations in flight, the interface of MultiFactorial is
similar to that of a FIFO queue. Specifically:
• The user of MultiFactorial enqueues a new input by setting the enqueue input to

a Valid value. MultiFactorial also includes an isFull method to signal

6.004 Spring 2021 Worksheet - 5 of 9 - L13 – Design Tradeoffs

whether it’s ready to accept a new input. If isFull is True, enqueue should not be
set to a Valid value, and MultiFactorial need not process the value at the
enqueue input.

• The user of MultiFactorial reads a ready output through the result method, and
consumes it by setting the dequeue input to True. When dequeue is set to True,
MultiFactorial should advance its output to the next result. MultiFactorial should
produce results in the same order that the inputs were given. result should return
Invalid if the next result to be consumed is not ready yet, or if there are no ongoing
computations.

 (A) Complete the skeleton code below to implement MultiFactorial.

module MultiFactorial;
 Vector#(2, Factorial) f;

 Reg#(Bit#(1)) head(0); // use output of this module
 Reg#(Bit#(2)) inFlight(0); // number of computations
 // in flight (0, 1, or 2)

 input Maybe#(Bit#(16)) enqueue default = Invalid;

 method Bool isFull = __________________;

 input Bool dequeue default = False;
 method Maybe#(Bit#(16)) result =

 __;

 rule tick;

 endrule
endmodule

6.004 Spring 2021 Worksheet - 6 of 9 - L13 – Design Tradeoffs

(B) Manually synthesize the MultiFactorial module. Use the Factorial
submodules as black boxes (i.e., connect their inputs and outputs but do not draw
their internals).

6.004 Spring 2021 Worksheet - 7 of 9 - L13 – Design Tradeoffs

Problem 3.

In lecture, we saw the implementation of a 2-element FIFO (first-in, first-out) queue.
Complete the skeleton code below to implement an n-element FIFO, using the same
structure as the 2-element FIFO we have seen.

module FIFO#(Integer n, type T);
 Vector#(n, Reg#(Maybe#(T))) elems(Invalid);

 method Maybe#(T) first = elems[0];
 method Bool isFull;
 Bool res = True;
 for (Integer i = 0; i < n; i = i + 1)
 res = _________________________;
 return res;
 endmethod

 input Bool dequeue default = False;
 input Maybe#(T) enqueue default = Invalid;

 rule tick;
 Bool needsEnqueue = isValid(enqueue);
 for (Integer i = 0; i < n; i = i + 1) begin
 // First, find next value of elems[i] given dequeue,
 // but not accounting for enqueue
 Maybe#(T) nextValue = ____________________

 // Enqueue to the first register that would be Invalid
 if (_________________________________) begin
 nextValue = enqueue;
 needsEnqueue = False;
 end
 elems[i] <= nextValue;
 end

 if (needsEnqueue)
 $display("Warning: Attempted enqueue to a full queue,
 enqueued value ignored");
 endrule
endmodule

6.004 Spring 2021 Worksheet - 8 of 9 - L13 – Design Tradeoffs

Problem 4.

Partial Products, Inc., has hired you as its vice president of marketing. Your immediate
task is to determine the sale prices of three newly announced multiplier modules. The
top-of-the-line Cooker is a pipelined multiplier. The Sizzler is a combinational multiplier.
The Grunter is a slower sequential multiplier. Their performance figures are as follows (T
is some constant time interval):

 Throughput Latency
Cooker 1/T 5T
Sizzler 1/4T 4T

Grunter 1/32T 32T

Customers follow a single principle: Buy the cheapest combination of hardware that
meets their performance requirements. These requirements may be specified as a
maximum allowable latency, a minimum acceptable throughput, or some combination of
these. Customers are willing to try any parallel or pipelined configuration of multipliers
in an attempt to achieve the requisite performance.

You may neglect the cost (both financial and as a decrease in performance) of any
routing, registers, or other hardware needed to construct a configuration. Concentrate
only on the inherent capabilities of the arrangement of multipliers itself.

It has been decided that the Cooker will sell for $1000. The following questions deal with
determining the selling prices of Sizzlers and Grunters.

(A) How much can you charge for Sizzlers and still sell any? That is, is there some price

for Sizzlers above which any performance demands that could be met by a Sizzler
could also be met by some combination of Cookers costing less? If there is no such
maximum price, indicate a performance requirement that could be met by a Sizzler
but not by any combination of Cookers. If there is a maximum selling price, give the
price and explain your reasoning.

(B) How little can you charge for Sizzlers and still sell any Cookers? In other words, is
there a price for the Sizzler below which every customer would prefer to buy Sizzlers
rather than a Cooker? Explain your reasoning.

6.004 Spring 2021 Worksheet - 9 of 9 - L13 – Design Tradeoffs

(C) Is there a maximum price for the Grunter above which every customer would prefer
to buy Cookers instead? Give the price if it exists, and explain your reasoning.

(D) Is there a minimum price for the Grunter below which every customer would prefer to
buy Grunters rather than a Cooker? Give the price if it exists, and explain your
reasoning.

(E) Suppose that, as a customer, you have an application in which 64 pairs of numbers
appear all at once, and their 64 products must be generated in as short a time as
practicable. You have $1000 to spend. At what price would you consider using
Sizzlers? At what price would you consider using Grunters?

