The Maybe Type

= Maybe#(T) represents an optional value of type T
= Either Invalid and no value, or Valid and a value

Possible implementation: A value + a valid bit
typedef struct { Bool valid; T value; } Maybe#(type T);
= Although we could implement our own, optional values are
so common that Maybe#(T) has a few built-in operations

Maybe# (Word) x = Invalid; // no need to give value
Maybe#(Word) y = Valid(42); // must specify a value

if (isvalid(y)) // check validity
Word z = fromMaybe(?, y); // extract valid value

GCD in Minispec
First version

typedef Bit#(32) Word;
module GCD;
Reg#(Word) x(1);
Reg#(Word 9); . .
o8 (Hord) y(8); New GCD computation is started
input Bool start; . .
input Word a; by setting start input to True
input Word b; and passing arguments through
rule gcd; “":’;iﬁf-“a inputs aand b
if (start) begin 774 y w7
X <= a; y <= b; # }}¢“H/L
end else if (x != @) begin
if (x >= y) begin // subtract
X <= X - y;

end else begin // swap
oy e Several cycles later, the module will
end signal it has finished through isDone.
endrule Then, the result gcd(a,b) will be
method Word result = y; available through the result method.
method Bool isDone ="(x =="0)3 if we doatt clreck
endmodule isDee ,tve pesdt mifrt le wey,

Improved GCD Module
Using Maybe Types

typedef struct {Word a; Word b;} GCDArgs;
module GCD;
Reg#(Word) x(1);
Reg#(Word) y(0);
input Maybe#(GCDArgs) in;
rule gcd;
if (isvalid(in)) begin
let args = fromMaybe(?, in);
X <= args.a; Yy <= args.b;
end else if (x != @) begin
if (x >= y) begin // subtract
X <= X - Y;

New GCD computation is started
by setting a Valid input in(which
always includes a and b)

end else begin // swap
X <=y; Yy <=X;
end
end When GCD computation finishes,
endrule

result becomes a Valid output
method Maybe#(Word) result =
(x == 0)? Valid(y) : Invalid;
endmodule

6.004 Tutorial Problems
L11 — Sequential Circuits in Minispec

Note: A subset of problems are marked with a red star (¥%). We especially encourage you to try
these out before recitation.

Problem 1. %

Implement the combination lock FSM from Lecture 10 as a Minispec module. The lock
FSM should unlock only when the last four input bits have been 0110. The diagram
below shows the FSM’s state-transition diagram.

(A) Implement this state-transition diagram by filling in the code skeleton below. Use the State
enum to ensure state values can only be SO-S5.

typedef enum { SO, S1, S2, S3, S4 } State;

module Lock;
Reg#(State) state(Se);

input Bit#(1) in;

rule tick;
state <= case (state)
So: (_inzzo)ZSl'-S(J ;

s1: [in==0)251:S2
s2: [in==0) 151:53
s3: (iaz==0)? 5Y:50

S4: [{n::o)z slifT 5
endcase;
endrule
method Bool unlock = [_S'-ta.-u..:‘-: 5"",) R

endmodule

6.004 Worksheet -1of9- L11 — Sequential Circuits in Minispec

(B) How many flip-flops does this lock FSM require to encode all possible states?
5 ‘7'055'"'("' Stevee S V‘C,quv\\hl/.(R bvts o sfcre

(C) Consider an alternative implementation of the Lock module that stores the last four input
bits. Fill in the skeleton code below to complete this implementation.

module Lock;
Reg#(Bit#(4)) lastFourBits(4'b1111);

Shite Aé‘eﬁ/, € thon R t with in
input Bit#(1) in;

rule tick;)
lastFourBits <= {/(.ﬁ&ﬁf Bier (220d, m—f ;
endrule
method Bool unlock = (/{A’*"‘[Wg'ﬂ!= =4'%0 110 ;
endmodule

Somc:ebu* <o rewender:

MINISPECS . pyHon-
(JL ¥ l +] =2 H=4 Cot = et -+l Co—~t = 3t1=Y
L= Comt (ot = -
f?':lcm*q;’ Xx= 3%4=l2 Xz Co~rt ¥4 X= HYve4d= lle
1<= xt1, ?= ati=9g 7,—_ | 7 = 1bt1= 1]
end rehe
ote. <
::M::*; I~ mim‘secc., rq'ﬂl—({ oL U\PJ&M &t <tle
- E of the Cyecle.
=S
==

6.004 Worksheet -20f9- L11 — Sequential Circuits in Minispec

Problem 2. %

Implement the Fibonacci FSM from Problem 3 of the previous worksheet by filling in the
code skeleton below.

// Use 32-bit values Fo=0,F1=1,Fn=Fng+Fno V N>=2
typedef Bit#(32) Word; hest Stwte Compartaction esin
. . jtr) o it-
module Fibonacci; + =1
Reg#(Word) x(0); y* =x*
Reg#(Word) y(@); xt=x®+yt

Regt#(Word) i(0);
input Maybe#t(Word) in default = Invalid;

rule tick;
£ (isValid(in)) 1)
x<=1; lﬂf,
e=0;
?(: _“, L&[z.; l'ﬂ)"'ll'
end e Hf (is0) I;erh
X<= >¢+7;
Y (= ¥
[<&=i=1,
-&vul

endrule

method Maybe#(Word) result = (i=20) T Viddlx) : Towatid
endmodule

we u.‘u(a.-u.)("f, w\d ¢ at ea.ola (vak (7&‘&

We chedk '/w a valid inpt €0 Aoadd ineo
Resdt s docd ot x wdrem je=0

6.004 Worksheet -30f9- L11 — Sequential Circuits in Minispec

Problem 3.
Implement a sequential circuit to compute the factorial of a 16-bit number.

(A) Design the circuit as a sequential Minispec module by filling in the skeleton code below. The
circuit should start a new factorial computation when a Valid input is given. Register x
should be initialized to the input argument, and register f should eventually hold the output.
When the computation is finished, the result method should return a Valid result; while the
computation is ongoing, result should return Invalid.

You can use the multiplication operator (*). * performs unsigned multiplication of Bit#(n)
inputs. Assume inputs and results are unsigned. Though we have not yet seen how to
multiply two numbers, lab 5 includes the design of a multiplier from scratch.

module Factorial;
Reg#(Bit#(16)) x(0);
Reg#(Bit#(16)) f(0);
input Maybe#(Bit#(16)) in default = Invalid;

rule factorialStep;

endrule

method Maybe#(Bit#(16)) result =

endmodule

6.004 Worksheet -4 0of 9 - L11 — Sequential Circuits in Minispec

(B) Manually synthesize your Factorial module into a sequential circuit with registers and
combinational logic blocks (similar to how Lecture 11 does this with GCD). No need to
draw the implementation of all basic signals (e.g., you can give formulas, like for the sel
signal in Lecture 11).

6.004 Worksheet -50f9- L11 — Sequential Circuits in Minispec

Problem 4. Sequential Circuits in Minispec (Fall 2019 Quiz 2, Problem 3, 18 points)

You join a startup building hardware to mine Dogecoins. In this cryptocurrency, mining coins
requires repeatedly evaluating a function with two arguments, sc(x, y). X is given to you, and
mining requires trying different values of y until you find a y for which sc(x, y) is below a
threshold value. Finding such a y value yields several Dogecoins as a reward, which you can then
exchange for cold hard cash.

Because the sc function is expensive, it is implemented as a multi-cycle sequential module,
called SC. SC is given to you. Its implementation is irrelevant, and its interface, shown below, is
the usual interface for multi-cycle modules: SC has a single input, in, and a single method,
getResult(). To start a new computation, the module user sets in to a Valid Args struct
containing arguments X and y. Some cycles later, SC produces the result as a Valid output of its
getResult () method. While SC is processing an input, the getResult () method returns
Invalid and in should stay Invalid.

module SC; // input struct to SC
input Maybe#(Args) in default = Invalid; typedef struct {
Bit#(32) x;
method Maybe#(Bit#(32)) getResult(); Bit#(32) y;
// unknown implementation } Args;
endmethod

// unknown rules
endmodule

You are asked to design the ArgFeeder module, which accepts an input x, and feeds a sequence
of inputs (x, 0), (x, 1), (x, 2),.., (X, y-1), (x, y) tothe SC module. ArgFeeder
keeps feeding values to SC until SC's result is less than threshold (a parameter to your module).
At that point, ArgFeeder should return the y such that (x, y) meets this condition through its
getResult () method. The diagram below sketches the implementation of ArgFeeder. Like
SC, ArgFeeder follows the usual interface for a multi-cycle module.

B B> vIP out] ArgFeeder
SC

Maybe#(Bit#(32))=— in_x Maybe#(Args) —] in
Maybe#(Bit#(32)) «getResult() Maybe#(Bit#(32)) «—] getResult()

Implement the ArgFeeder module by completing the implementation of the getResult ()
method and the tick rule. The rule considers three cases:

(i) anew input is provided to ArgFeeder,

(il) SCreturns a Valid result, and it is /ess than the threshold value, and

(iii)) SC returns a Valid result, but it is not less than the threshold value.

You may use any Minispec operator, including arithmetic (+, -, *, /). You will not need

additional registers to complete this problem. Do not add additional rules, methods, or
functions.

6.004 Worksheet -60f9 - L11 — Sequential Circuits in Minispec

module ArgFeeder#(Integer threshold);
SC sc;

Reg#(Maybe#(Bit#(32))) out(Invalid);
RegU#(Bit#(32)) x;

RegU#(Bit#(32)) vy;

input Maybe#(Bit#(32)) in_x default = Invalid;

method Maybe#(Bit#(32)) getResult();
// implement the getResult() method

return

endmethod

rule tick;
if (isValid(in_x)) begin
// case (i): received a new input; start a new sequence of (x, y) pairs

sc.in = Valid(Args{x: "N 1)
out <= 5
X <= 5
y <= 5

end else if (isValid(sc.getResult())) begin
if (fromMaybe(?, sc.getResult()) < threshold) begin
// case (ii): result satisfies threshold

out <= K

end else begin
// case (iii): result does not yet satisfy threshold
// send next (x, y) pair to SC

sc.in = Valid(Args{x: , Y s
y <= 5
end
end
endrule
endmodule

6.004 Worksheet -70f9 - L11 — Sequential Circuits in Minispec

Problem 5. Sequential Minispec (Spring 2020 Quiz 2, Problem 4, 16 points)

The incomplete Minispec module, FindLongestBitRun, below counts the length of the longest
string of 1’s in a 32-bit word. The algorithm works by repeatedly performing a bitwise AND of
the word with a version of itself that has been left-shifted by one. This repeats until the word is 0.
The number of iterations required is the longest string of 1’s in the word. This works because
each iteration converts the last 1 in any string of 1°s into a 0. The word will not equal zero until
its longest string of 1’s has all been converted into 0’s.

The circuit should start a new computation when a Valid input is given and bitString is 0. The
bitString register should be initialized to the input argument, and register n should hold the
output. When the computation is finished, the result method should return a Valid result; while
the computation is ongoing, result should return Invalid.

typedef Bit#(32) Word;
module FindLongestBitRun;
Reg#(Bool) initialized(False);
Reg#(Bit#(6)) n(0);
Reg#(Word) bitString(@);
input Maybe#(Word) in default = Invalid;

method Maybe#(Bit#(6)) result;

return (initialized && bitString == @) ? _[Part Al] : [Part A1] ;
endmethod
rule tick;
if (isvalid(in) && bitString == 0) begin
n <= 0;
bitString <= [Part A2] ;

initialized <= True;

end else if (initialized && (bitString != ©)) begin
n<=n+1;
bitString <= [Part A3] ;

end
endrule
endmodule

(A) (8 points) There are blanks in the code above labeled [Part A#]. #]. Fill in the missing
code, by copying each of the lines below and filling in the blanks corresponding to
parts A1, A2, and A3.

You may use any Minispec operators, built-in functions, and literals. You will not need
additional registers to complete this problem. Do not add other rules, methods, or functions.

(Label: 4A_1) A1: return (initialized && bitString ==0) ?»
(Label: 4A_2) A2: bitString <= 5
(Label: 4A_3) A3: bitString <= 5

6.004 Worksheet -80of9 - L11 — Sequential Circuits in Minispec

(B) (8 points) At cycle 0, the input is set to Valid(32°b0111). Copy and fill in the table
below to indicate the values at the output of the result() method, the value in register
n, and the value in the bitString register. Write “Invalid” if a value is invalid, “?” if a
value is unknown, and just a number to indicate a valid value (i.e. you do not need to write
“Valid(5)”; just write “5”). “Ob” indicates that the number after it is a binary value.

(Label: 4B) Copy and fill in the table below

Cycle 0 1 2 3 4 5 6

Input obo111 Invalid ob1111 Invalid obooo1 Invalid Invalid

result()
output

value in
register n

value in
bitString

6.004 Worksheet -90f9 - L11 — Sequential Circuits in Minispec

