

6.004 Worksheet - 1 of 9 - L11 ± Sequential Circuits in Minispec

Note: A subset of problems are marked with a red star (★). We especially encourage you to try
these out before recitation.

Problem 1. ★
Implement the combination lock FSM from Lecture 10 as a Minispec module. The lock
FSM should unlock only when the last four input bits have been 0110. The diagram
belRZ VhRZV Whe FSM¶V VWaWe-transition diagram.

(A) Implement this state-transition diagram by filling in the code skeleton below. Use the State
enum to ensure state values can only be S0-S5.

typedef enum { S0, S1, S2, S3, S4 } State;

module Lock;
 Reg#(State) state(S0);

 input Bit#(1) in;

 rule tick;
 state <= case (state)

 S0: _____________________________;

 S1: _____________________________;

 S2: _____________________________;

 S3: _____________________________;

 S4: _____________________________;
 endcase;
 endrule

 method Bool unlock = _____________________________;
endmodule

6.004 Tutorial Problems

L11 – Sequential Circuits in Minispec

in o 51 so
in o S1 S2
in o S1 S3
in D S4 so

in o S1 S2

State S4

6.004 Worksheet - 2 of 9 - L11 ± Sequential Circuits in Minispec

(B) How many flip-flops does this lock FSM require to encode all possible states?

(C) Consider an alternative implementation of the Lock module that stores the last four input

bits. Fill in the skeleton code below to complete this implementation.

module Lock;
 Reg#(Bit#(4)) lastFourBits(4'b1111);

 input Bit#(1) in;

 rule tick;
 lastFourBits <= _________________________________;
 endrule

 method Bool unlock = _________________________________;
endmodule

5 possible States requires 3 bits to stare

shift leftby1 L thenOR it withinmurmur

lasttarBiesczD in

lastEwBts 430110

Something to remember

PYTHONMINISPEC
rule update

ane can 11 care 3 11 4 Come_care 11 care 311 4
count 4 x 3 4 12 X cant 4 X 4 4 16

yc x 11 y 81 1 9 y X11 y 1611 17
endrule

previous state at the
cane 3 In minispec registers are updated
8 END of the cycley 5

6.004 Worksheet - 3 of 9 - L11 ± Sequential Circuits in Minispec

Problem 2. ★

Implement the Fibonacci FSM from Problem 3 of the previous worksheet by filling in the
code skeleton below.

// Use 32-bit values
typedef Bit#(32) Word;

module Fibonacci;
 Reg#(Word) x(0);
 Reg#(Word) y(0);
 Reg#(Word) i(0);

 input Maybe#(Word) in default = Invalid;

 rule tick;

 endrule

 method Maybe#(Word) result = _________________________________;
endmodule

nextstate computation egh
it1 it I
yH t

yettext yt

it isValid in begin
I

yc o
i fromMaybel in 1

end else if iso begin
x xty
y x
il i I

end

i o Validx Invalid

weupdate x y and i at each clockcycle
Wecheck for a validinput to load into i
Result is found at when i o

6.004 Worksheet - 4 of 9 - L11 ± Sequential Circuits in Minispec

Problem 3.

Implement a sequential circuit to compute the factorial of a 16-bit number.

(A) Design the circuit as a sequential Minispec module by filling in the skeleton code below. The

circuit should start a new factorial computation when a Valid input is given. Register x
should be initialized to the input argument, and register f should eventually hold the output.
When the computation is finished, the result method should return a Valid result; while the
computation is ongoing, result should return Invalid.

 You can use the multiplication operator (*). * performs unsigned multiplication of Bit#(n)

inputs. Assume inputs and results are unsigned. Though we have not yet seen how to
multiply two numbers, lab 5 includes the design of a multiplier from scratch.

module Factorial;
 Reg#(Bit#(16)) x(0);
 Reg#(Bit#(16)) f(0);

 input Maybe#(Bit#(16)) in default = Invalid;

 rule factorialStep;

 endrule

 method Maybe#(Bit#(16)) result =

 __;
endmodule

6.004 Worksheet - 5 of 9 - L11 ± Sequential Circuits in Minispec

(B) Manually synthesize your Factorial module into a sequential circuit with registers and

combinational logic blocks (similar to how Lecture 11 does this with GCD). No need to
draw the implementation of all basic signals (e.g., you can give formulas, like for the sel
signal in Lecture 11).

6.004 Worksheet - 6 of 9 - L11 ± Sequential Circuits in Minispec

Problem 4. Sequential Circuits in Minispec (Fall 2019 Quiz 2, Problem 3, 18 points)

You join a startup building hardware to mine Dogecoins. In this cryptocurrency, mining coins
requires repeatedly evaluating a function with two arguments, sc(x, y). x is given to you, and
mining requires trying different values of y until you find a y for which sc(x, y) is below a
threshold value. Finding such a y value yields several Dogecoins as a reward, which you can then
exchange for cold hard cash.

Because the sc function is expensive, it is implemented as a multi-cycle sequential module,
called SC. SC is given to you. Its implementation is irrelevant, and its interface, shown below, is
the usual interface for multi-cycle modules: SC has a single input, in, and a single method,
getResult(). To start a new computation, the module user sets in to a Valid Args struct
containing arguments x and y. Some cycles later, SC produces the result as a Valid output of its
getResult() method. While SC is processing an input, the getResult() method returns
Invalid and in should stay Invalid.

module SC;
 input Maybe#(Args) in default = Invalid;

 method Maybe#(Bit#(32)) getResult();
 // unknown implementation
 endmethod

 // unknown rules
endmodule

// input struct to SC
typedef struct {
 Bit#(32) x;
 Bit#(32) y;
} Args;

You are asked to design the ArgFeeder module, which accepts an input x, and feeds a sequence
of inputs (x, 0), (x, 1), (x, 2), ..., (x, y-1), (x, y) to the SC module. ArgFeeder
keeps feeding values to SC until SC's result is less than threshold (a parameter to your module).
At that point, ArgFeeder should return the y such that (x, y) meets this condition through its
getResult() method. The diagram below sketches the implementation of ArgFeeder. Like
SC, ArgFeeder follows the usual interface for a multi-cycle module.

Implement the ArgFeeder module by completing the implementation of the getResult()
method and the tick rule. The rule considers three cases:

(i) a new input is provided to ArgFeeder,
(ii) SC returns a Valid result, and it is less than the threshold value, and
(iii) SC returns a Valid result, but it is not less than the threshold value.

You may use any Minispec operator, including arithmetic (+, -, *, /). You will not need
additional registers to complete this problem. Do not add additional rules, methods, or
functions.

6.004 Worksheet - 7 of 9 - L11 ± Sequential Circuits in Minispec

module ArgFeeder#(Integer threshold);
 SC sc;

 Reg#(Maybe#(Bit#(32))) out(Invalid);
 RegU#(Bit#(32)) x;
 RegU#(Bit#(32)) y;

 input Maybe#(Bit#(32)) in_x default = Invalid;

 method Maybe#(Bit#(32)) getResult();
 // implement the getResult() method

return ;

 endmethod

 rule tick;
 if (isValid(in_x)) begin
 // case (i): received a new input; start a new sequence of (x, y) pairs

sc.in = Valid(Args{x: , y: });

out <= ;

x <= ;

y <= ;

 end else if (isValid(sc.getResult())) begin
 if (fromMaybe(?, sc.getResult()) < threshold) begin
 // case (ii): result satisfies threshold

out <= ;

 end else begin
 // case (iii): result does not yet satisfy threshold
 // send next (x, y) pair to SC

sc.in = Valid(Args{x: , y: });

y <= ;

 end
 end
 endrule
endmodule

6.004 Worksheet - 8 of 9 - L11 ± Sequential Circuits in Minispec

Problem 5. Sequential Minispec (Spring 2020 Quiz 2, Problem 4, 16 points)

The incomplete Minispec module, FindLongestBitRun, below counts the length of the longest
VWUing Rf 1¶V in a 32-bit word. The algorithm works by repeatedly performing a bitwise AND of
the word with a version of itself that has been left-shifted by one. This repeats until the word is 0.
The nXmbeU Rf iWeUaWiRnV UeTXiUed iV Whe lRngeVW VWUing Rf 1¶V in Whe ZRUd. ThiV ZRUkV becaXVe
each iWeUaWiRn cRnYeUWV Whe laVW 1 in an\ VWUing Rf 1¶V inWR a 0. The ZRUd Zill nRW eTXal]eUR XnWil
its longest string of 1¶V haV all been cRnYeUWed inWR 0¶V.
The circuit should start a new computation when a Valid input is given and bitString is 0. The
bitString register should be initialized to the input argument, and register n should hold the
output. When the computation is finished, the result method should return a Valid result; while
the computation is ongoing, result should return Invalid.

typedef Bit#(32) Word;

module FindLongestBitRun;
 Reg#(Bool) initialized(False);
 Reg#(Bit#(6)) n(0);
 Reg#(Word) bitString(0);

 input Maybe#(Word) in default = Invalid;

 method Maybe#(Bit#(6)) result;
 return (initialized && bitString == 0) ? _[Part A1]_ : ___[Part A1]__;
 endmethod

 rule tick;
 if (isValid(in) && bitString == 0) begin
 n <= 0;
 bitString <= _____[Part A2]______;
 initialized <= True;
 end else if (initialized && (bitString != 0)) begin
 n <= n + 1;
 bitString <= _________[Part A3]________;
 end
 endrule
endmodule

(A) (8 points) There are blanks in the code above labeled [Part A#]. #]. Fill in the missing

code, by copying each of the lines below and filling in the blanks corresponding to
parts A1, A2, and A3.

You may use any Minispec operators, built-in functions, and literals. You will not need
additional registers to complete this problem. Do not add other rules, methods, or functions.

(Label: 4A_1) A1: return (initialized && bitString == 0) ? ______:
______;

(Label: 4A_2) A2: bitString <= ___________________________________;

(Label: 4A_3) A3: bitString <= ___________________________________;

6.004 Worksheet - 9 of 9 - L11 ± Sequential Circuits in Minispec

(B) (8 points) At cycle 0, the input is set to Valid(ɪɩ’bɥɨɨɨƀ. Copy and fill in the table
below to indicate the values at the output of the result() method, the value in register
n, and the value in the bitString register. WUiWe ³Invalid´ if a YalXe iV inYalid, ³?´ if a
value is unknown, and just a number to indicate a valid value (i.e. you do not need to write
³Valid(5)´; jXVW ZUiWe ³5´). ³0b´ indicaWeV WhaW Whe nXmbeU afWeU iW iV a binaU\ YalXe.

(Label: 4B) Copy and fill in the table below

Cycle 0 1 2 3 4 5 6

Input 0b0111 Invalid 0b1111 Invalid 0b0001 Invalid Invalid

result()
output

value in
register n

value in
bitString

