6.004 Tutorial Problems L08 - Combinational Devices and Introduction to Minispec

Note: A subset of essential problems are marked with a red star (\star). We especially encourage you to try these out before recitation.

Problem 1.
(A) Consider the 4-bit ripple carry adder we saw in lecture. Its circuit is shown below. Modify the diagram to build a subtractor, ie., a circuit that given 4-bit inputs a and b, computes $a-b$.

You may use only one ripple-carry adder, and may add at most four gates to the diagram. Assume that a and b use two's complement representation. Your circuit should return the result in two's complement representation.

Hint: Back in lecture 1, we saw that by using two's complement representation, we could perform subtraction using addition.

(B) Implement your subtractor as a Minispec function sub4. Your function can use at most one rca function (the function implementing 4-bit ripple carry adder we saw in lecture).
function Bit\#(5) sub4(Bit\#(4) a, Bit\#(4) b);
$a-b$ return rca $\left(a, \sim b,\left.\right|^{\prime} b 1\right) a+(-b)$ endfunction

L08 - Combinational Logic 1

Problem 2. \star

(A) Implement a Minispec function isZero that returns 1 if its 4 -bit input is zero, and 0 otherwise. Your implementation can only use bitwise logical operations and bit selection, and cannot use the equality/inequality operators.
function Bit\#(1) isZero(Bit\#(4) x);
neturn $\sim X[3] f \sim \times[2$ 身~ x [i] \& $w \times[0]$
endfunction
de pars $>$

$$
x[3]+x[2]+x[1]+x[0]
$$

(B) Manually synthesize your function into a combinational circuit using 2-input AND gates, 2input OR gates, and inverters. Keep delay low by minimizing the number of logic gates between input and output. Draw the resulting circuit.

Problem 3.
Write the truth table for the combinational device described by the function below. 0×0 function Bit\#(2) f(Bit\#(1) a, Bit\#(1) b, Bit\#(1) c); Bit\#(4) upper $=4$ 'hB; // hex value $0 \times B$ Bit\#(4) lower = (c == 1)? 4'h8 : 4'h7; Bit\#(8) x = \{upper, lower\};
Bit\#(2) ret $=\operatorname{case}(\{a, b\})$
0 : 1;
1: $x[1: 0]$;
2: $x[3: 2]$;
3: x[7:6] ^ 2‘b11;
endcase;
return ret;
endfunction

$$
\begin{gathered}
\text { if }\{a, b\}==0 \text { : } \\
\text { neturn }
\end{gathered}
$$

$$
\begin{aligned}
& \text { else it }\{a, b\}==1: \\
& \text { netun } X[1: 0]
\end{aligned}
$$

$$
\text { elge it }\{a, b\}==2 \text {; }
$$

vetem $x(3: 2]$

a	b	c	$\operatorname{ret}[1]$	$\operatorname{ret}[0]$
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

$$
\text { else it }\{a, b\}==3:
$$

rewirn $x[7: 6]^{\wedge} 2^{\prime} 611$
NARD

$$
=
$$

Show that 1-bit 2-to-1 muxes are universal, ie., they can be used to implement any combinational circuit. To show universality, implementing an inverter, an AND gate, and an OR gate using only 1-bit 2-to-1 maxes. You may tie inputs to 1 or 0 if necessary, and may use one or multiple maxes. Clearly label all inputs artoreputs.

Logic diagram of inverter implementation using 2-input mux:

Logic diagram of AND gate implementation using 2-input mus.

$$
\operatorname{NOT}(\operatorname{AND}(A, B))
$$

0

$$
z(A, O, B)^{0} \operatorname{Na}(z(A, O, B))
$$

Logic diagram of OR gate implementation using 2-input max:

$$
z=-\sin ^{2}=\bar{S}(1, B, S)
$$

$$
x_{A=1}^{t}=S+B \cdot \bar{S}
$$

$$
=S+B
$$

Problem 5.

The parity of an n-bit number x is 1 if x has an odd number of 1 's, and 0 otherwise. Parity is useful to detect single-bit errors, as a single bit flip changes the parity of a value.
(A) Write a Minispec function addParity that takes as input 4-bit value and returns a 5 -bit output that adds a parity bit to the input in the most significant position. In other words, the most-significant bit of the output should be the input's parity, and the remaining bits should be the input.

(C) Write a Minispec function checkParity that takes as input a 5-bit value and returns True if the input has an even number of 1's, and returns False otherwise.

$$
\rightarrow(1, \tau(0,1, A), Z(0,1, B))
$$

Problem 6. Combinational Minispec (part of Spring 2020 Quiz 2 problem 3, 8 points)
Complete the truth table for the following Minispec function.

```
function Bit\#(3) h(Bit\#(1) a, Bit\#(2) b);
    Bit\#(3) ret = 3'b110;
    case (\{a, b[1]\})
        0 : ret \(=\{1\) 'b0, zeroExtend(a) \& b\};
        1: ret \(=\) zeroExtend(a) + signExtend(b);
        3: ret = \{a, ~b\};
        default: ret = 3'b010;
    endcase
    return ret;
endfunction
```

\mathbf{a}	$\mathbf{b}[\mathbf{1}]$	$\mathbf{b}[\mathbf{0}]$	$\operatorname{ret}[2]$	$\operatorname{ret}[\mathbf{1}]$	$\operatorname{ret}[\mathbf{0}]$
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

(Label: 3A) Copy the truth table and fill in all the missing blanks.

