6.004 Tutorial Problems

L06 - Boolean Algebra and Logic Synthesis

Note: A small subset of essential problems are marked with a red star (\star). We especially encourage you to try these out before recitation.

$-$| \mathbf{A} | \mathbf{B} | \mathbf{C} | \mathbf{F} | \mathbf{G} |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 1 | 1 |
| 0 | 0 | 1 | 1 | 1 |
| 0 | 1 | 0 | 0 | 1 |
| 0 | 1 | 1 | 1 | 0 |
| 1 | 0 | 0 | 1 | 1 |
| 1 | 0 | 1 | 0 | 0 |
| 1 | 1 | 0 | 0 | 1 |
| 1 | 1 | 1 | 1 | 0 |

Problem 1.

Consider the truth table on the right, which defines two functions F and G of three input variables (A, B, and C).

For each function, write it in normal form, then find a minimal sum of products (minimal SOP) expression.

Problem 2.

Consider the 3 -input Boolean function $G(A, B, C)=$

1. How many 1 's are there in the output column of G's 8 -row truth table?

2. $\bar{C}(\bar{B} / \bar{B})+A \bar{B}(\bar{\zeta} \neq \bar{C})^{\prime}=$ good news is that it has as many as you need. Using only combinational circuits built from G gates, one can implement (choose the best response):

- Any Boolean function (G is functionally complete)
(B) Only functions with 3 inputs or less
(C) Only functions with the same truth table as G

functianaly completely

4. Can a sum-of-products expression involving 3 input variables with greater than 4 product

$\bar{A} \bar{B} C+\bar{A} B \bar{C}+A \bar{B} \bar{C}+A B C$
$0 \cup 1 \quad 010$

Problem 3.

Consider the logic diagram shown below, which includes XOR2, NAND2, NAND3, and INV (inverter) gates.

Gate	t_{pD}
INV	1.0 ns
NAND2	1.5 ns
NAND3	1.8 ns
XOR2	2.5 ns

1. Using the t_{PD} information for the gate components shown in the table above, compute the t_{PD} for the circuit.
$x \rightarrow$ xOR \rightarrow xOR \rightarrow O

$$
2.5+2.5=5 \cap 5
$$

$\mathrm{Bin}_{\mathrm{n}} \rightarrow \mathrm{inv} \rightarrow \mathrm{NAND} 2 \rightarrow$ AND $3 \rightarrow$ Bart ${ }^{\mathrm{t}_{\mathrm{p}}}=$

$$
1+1.5+1.8=4.3 \cap 5
$$

2. Find minimal sum-of-products expressions for both outputs, \mathbf{D} and Bout.

NOTE: The gates implement the following functions:

- $\operatorname{NAND} 2(a, b)=\overline{a \cdot b}$
- RAND $(a, b, c)=\overline{a \cdot b \cdot c}$

$+\overline{X Y} \operatorname{Bin}$
$0^{(403}(8, y)$
0

Minimal sum of products for $\mathbf{D}(\mathbf{X}, \mathbf{Y}, \mathrm{Bin})=$

$$
\text { Minimal sum of products for } \operatorname{Bout}(\mathbf{X}, \mathbf{Y}, B i n)=
$$

\qquad

Problem 4.

Simplify the following Boolean expressions by finding a minimal sum-of-products expression for each one:

1. $a c+b+c$
2. $(a+b) c+\bar{c} a+b(\bar{a}+c)$
3. $a \overline{(b+c)}(b+a(b+c))$
4. $a(b+c(d+e f))$

Problem 5.

There are some Boolean expressions for which no assignment of values to variables can produce True (e.g., $a \bar{a}$). Those Boolean expressions are said to be non-satisfiable. Are the following Boolean expressions satisfiable? If the expression is satisfiable, give an assignment to variables that makes the expression evaluate to True. If the expression is non-satisfiable, prove it.

1. $(a+b) c+\bar{c} a+b(\bar{a}+c)$
2. $(x+y)(x+\bar{y})(z+\bar{y})(y+\bar{x})$
3. $(x+y+z)(x+y+\bar{z})(x+\bar{y}+z)(\bar{x}+y+z) \cdot$

$$
(x+\bar{y}+\bar{z})(\bar{x}+y+\bar{z})(\bar{x}+\bar{y}+z)(\bar{x}+\bar{y}+\bar{z})
$$

4. $\overline{x y z+x y \bar{z}+x \bar{y} z+x \overline{y z}+\bar{x} y z+\bar{x} y \bar{z}+\overline{x y z}}$

Problem 6.

(A) Simplify the following Boolean expressions by finding a minimal sum-of-products expression for each one. (Note: These expressions can be reduced into a minimal SOP by repeatedly applying the Boolean algebra properties we saw in lecture.)

1. $\overline{(a+b \cdot \bar{c})} \cdot d+c$
2. $a \cdot \overline{(b+c)}(c+a)$
(B) There are Boolean expressions for which no assignment of values to variables can produce True (e.g., $a \cdot \bar{a}$). These Boolean expressions are said to be non-satisfiable.

Are the following Boolean expressions satisfiable? If the expression is satisfiable, give an assignment to variables that makes the expression evaluate to True. If the expression is non-satisfiable, explain why.

1. $(\bar{x}+y \bar{z}) \cdot(\bar{y} x+z) \cdot(\bar{z} y+x)$
2. $(\bar{x}+y \bar{z}) \cdot(\bar{y} x+z) \cdot(\bar{z} y+x)+(\bar{x}+y z) \cdot(\bar{y} x+z) \cdot(\bar{z} y+x)$

Problem 7. Boolean Algebra and Combinational Logic (19 points, Spring 2020 Quiz 1) \star
(A) (3 points) Consider the logic diagram below, which includes XNOR2, OR2, NAND2, AND2, and INV. Using the $t_{P D}$ information for the gate components shown in the table below, compute the t_{PD} for the circuit.

Gate	t_{pn}
XNOR2	7.0 ns
OR2	5.5 ns
NAND2	3.0 ns
AND2	5.0 ns
INV	2.0 ns

$$
\mathrm{t}_{\mathrm{PD}}(\mathrm{~ns})=
$$

\qquad
(B) (6 points) Given the circuit shown below, construct the truth table for outputs \mathbf{X} and \mathbf{Y}.

(C) (4 points) Find a minimal sum-of-products expression for output \mathbf{X} of the circuit described by the truth table shown below.

\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{X}
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

[^0](D) (6 points) For each of the following expressions determine if it is satisfiable. If satisfiable, provide a minimal sum-of-products. Otherwise, show why it is not satisfiable.

1. $\overline{\bar{c}(a+b)(a+d)}(a b \bar{c})$
2. $(x+y)(x \bar{y} z+y \bar{z}+\bar{y})$

[^0]: Minimal sum of products for $\mathbf{X}=$

