6.004 Tutorial Problems L06 – Boolean Algebra and Logic Synthesis

Note: A small subset of essential problems are marked with a red star (\bigstar). We especially encourage you to try these out before recitation.

	A	В	С	F	G	
_	0	0	0	1	1	
	0	0	-1	1	1	
	0	1	0	0	1	
	0	1	1	1	0	
	1	0	0	1	1	
	1	0	1	0	0	
	1	1	0	0	1	
	1	1	1	1	0	

Consider the truth table on the right, which defines two functions F and G of three input variables (A, B, and C).

For each function, write it in **normal form**, then find a **minimal sum of products** (minimal SOP) expression.

A=0 640 0 Problem 2. ★ O $\overline{A} \bullet \overline{C}$ Consider the 3-input Boolean function G(A,B,C) 1. How many 1's are there in the output column of G's 8-row truth table? 2. Give a minimal sum-of-products expression for G. AB 3. There's good news and bad news: the bad news is that the stockroom only has G gates. The good news is that it has as many as you need. Using only combinational circuits built from G gates, one can implement (choose the best response): Any Boolean function (G is functionally complete) Only functions with 3 inputs or less (B) (C) Only functions with the same truth table as G G(A,B, O) =) NAND Some tR 4. Can a sum-of-products expression involving 3 input variables with greater than 4 product terms *always* be simplified to a sum-of-products expression using fewer product terms? $((A, B, o)) = \overline{A} \cdot \overline{C} + A\overline{B} + \overline{B} \cdot \overline{C}$ $= \overline{A} + A\overline{B} + \overline{R}$ 6(A,B,C $= \overline{A} + \overline{B} (A + \overline{A})$

ABC+ABC+ABC+ABC 051

Problem 3. ★

Consider the logic diagram shown below, which includes XOR2, NAND2, NAND3, and INV (inverter) gates.

Gate	t _{PD}
INV	1.0ns
NAND2	1.5ns
NAND3	1.8ns
XOR2	2.5ns

1. Using the t_{PD} information for the gate components shown in the table above, compute the t_{PD} for the circuit.

X) XORI) XORZ)D 2.5+2.5=50 ns Bin - INV -> NANDZ JNAND3 2. Find minimal sum-of-products expressions for both outputs, **D** and **Bout**. 4.325 () NOTE: The gates implement the following functions: $NAND2(a, b) = a \cdot b$ $NAND3(a, b, c) = \overline{a \cdot b \cdot c}$ $XOR2(a,b) = a \cdot b + \overline{a} \cdot b$ Bin ·y+xy)Bin txy Bin Minimal sum of pro<mark>ducts for D(X,Y,Bin) =</mark> Minimal sum of products for Bout(X,Y,Bin) =

L06 – Boolean Algebra

Problem 4.

Simplify the following Boolean expressions by finding a *minimal sum-of-products expression* for each one:

1.
$$\overline{ac+b+c}$$

2.
$$(a+b)c + \overline{c}a + b(\overline{a}+c)$$

3.
$$a(\overline{b+c})(b+a(b+c))$$

4.
$$a(b + c (d + ef))$$

Problem 5.

There are some Boolean expressions for which no assignment of values to variables can produce True (e.g., $a\bar{a}$). Those Boolean expressions are said to be *non-satisfiable*. Are the following Boolean expressions satisfiable? If the expression is satisfiable, give an assignment to variables that makes the expression evaluate to True. If the expression is non-satisfiable, prove it.

1.
$$(a+b)c + \overline{c}a + b(\overline{a}+c)$$

2.
$$(x+y)(x+\overline{y})(z+\overline{y})(y+\overline{x})$$

3. $(x+y+z)(x+y+\overline{z})(x+\overline{y}+z)(\overline{x}+y+z) \cdot$ $(x+\overline{y}+\overline{z})(\overline{x}+y+\overline{z})(\overline{x}+\overline{y}+z)(\overline{x}+\overline{y}+\overline{z})$

4. $\overline{xyz + xyz + xyz + xyz + xyz + xyz + xyz + xyz}$

Problem 6.

(A) Simplify the following Boolean expressions by finding a minimal sum-of-products expression for each one. (*Note:* These expressions can be reduced into a minimal SOP by repeatedly applying the Boolean algebra properties we saw in lecture.)

1.
$$\overline{(a+b\cdot\overline{c})}\cdot d+c$$

2.
$$a \cdot \overline{(b+c)}(c+a)$$

(B) There are Boolean expressions for which no assignment of values to variables can produce True (e.g., $a \cdot \overline{a}$). These Boolean expressions are said to be *non-satisfiable*.

Are the following Boolean expressions satisfiable? If the expression is satisfiable, give an assignment to variables that makes the expression evaluate to True. If the expression is non-satisfiable, explain why.

1.
$$(\overline{x} + y\overline{z}) \bullet (\overline{y}x + z) \bullet (\overline{z}y + x)$$

2.
$$(\overline{x} + y\overline{z}) \cdot (\overline{y}x + z) \cdot (\overline{z}y + x) + (\overline{x} + yz) \cdot (\overline{y}x + z) \cdot (\overline{z}y + x)$$

Problem 7. Boolean Algebra and Combinational Logic (19 points, Spring 2020 Quiz 1) ★

(A) (3 points) Consider the logic diagram below, which includes XNOR2, OR2, NAND2, AND2, and INV. Using the t_{PD} information for the gate components shown in the table below, compute the t_{PD} for the circuit.

Gate	t _{PD}	
XNOR2	7.0ns	
OR2	5.5ns	
NAND2	3.0ns	
AND2	5.0ns	
INV	2.0ns	

 $t_{PD}(ns) =$ _____

(B) (6 points) Given the circuit shown below, construct the truth table for outputs X and Y.

(C) (4 points) Find a minimal sum-of-products expression for output **X** of the circuit described by the truth table shown below.

a	b	c	d	Χ
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

Minimal sum of products for X = _____

(D) (6 points) For each of the following expressions determine if it is satisfiable. If satisfiable, provide a minimal sum-of-products. Otherwise, show why it is not satisfiable.

1.
$$\overline{c}(a+b)(a+d)(ab\overline{c})$$

2. (x+y)(xyz+yz+y)