czeng.org / sixdouble 4
yczeng@mit.edu

$$
10^{\circ}=2^{\circ}=16^{\circ}=1
$$

Decinal

$$
\begin{aligned}
& \text { Decinal } \\
& \begin{array}{l}
213=2 \times 10^{2}+1 \times 10^{1}+3 \times 10^{\circ} \\
10^{2} 10^{\prime} 10^{\circ}= \\
=200+10+3=213
\end{array}
\end{aligned}
$$

Binary

$$
\begin{aligned}
& 10^{1011} \\
& =1 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0} \\
& =8+0+2+1=11
\end{aligned}
$$

Hexademical

$$
\begin{aligned}
& 0 \times 9 E \\
& \begin{array}{cccccc}
10 & 11 & 12 & 13 & 14 \\
A & B & C & D & E & F
\end{array} \\
& 9 \times 16^{1}+14 \times 16^{6} \\
& =9 \times 16+14 \\
& =158
\end{aligned}
$$

Modular Arithmetic

$$
0 \rightarrow 7
$$

Whet is rages of \#s we con in a Sifved w/ Edigit 6inary
e.j. 3 diput biney

$$
\begin{aligned}
& -2^{5-1}=-2^{4}=-16 \\
& 2^{N-1}-1=z^{4}-1=15
\end{aligned}
$$

Whet is rages of \#s we con in a unsipred w/ 5 digit binay e.f. for 3 dyit

$$
\begin{aligned}
& \text { e.f. tar } \begin{array}{l}
3 \text { dyit } \\
0 \rightarrow 2^{2}-1=0 \rightarrow 2^{3}-1 \\
0 \rightarrow 7 \\
0 \rightarrow 31 \\
2^{5}-1=32-1
\end{array}
\end{aligned}
$$

Two Carglement Aruthmatic
convert \# fram pos \rightarrow neg

$$
(-x)+x=0
$$

(1) flip every dypit
(2) add 1

$$
+0+1=
$$

$$
64+32+4+1
$$

10011010

$$
\frac{10011011}{--101}
$$

$$
=101
$$

$$
\begin{aligned}
& 1111111 \\
& 01100101 \\
& \begin{array}{r}
10011011 \\
+00000000
\end{array} \\
& -A+A=0=-1+1 \\
& -A=(\underbrace{-1-A)}_{1111}+1 \\
& \underset{\text { flippl }^{C} \xrightarrow[A_{n-1}]{-A_{n-1}} A_{1} \bar{A}_{0}}{ }
\end{aligned}
$$

$219=128+64+16+8+2+1$
 $=06 \underbrace{1101}_{D}-\underbrace{1011}_{\text {6.004 Tutorial Problems }} \Rightarrow$
 $O \times D B$
 L01 - Binary Encoding and Arithmetic

Note: A subset of essential problems are marked with a red star (\star). We especially encourage you to try these out before recitation.

Problem 1. Encoding positive integers

3. What is the hexadecimal representation for decimal 51 encoded as a 6 -bit binary number?
4. The hexadecimal representation for an 8 -bit unsigned binary number is 0 x 9 E . What is its decimal representation? \star
5. What is the range of integers that can be represented with a single unsigned 8 -bit quantity?
6. Since the start of official pitching statistics in 1988, the highest number of pitches in a single game has been 172. Assuming that remains the upper bound on pitch count, how many bits would we need to record the pitch count for each game as an unsigned binary number?
7. Compute the sum of these two 4 -bit unsigned binary numbers: 0 b $1101+0 b 0110$. Express the result in hexadecimal.

2. What is the hexadecimal representation for decimal -51 encoded as an 8-bit two's complement number?

1) convert tox to binary
2) carver binary
$1011 B$
3. The hexadecimal representation for an 8 -bit two's complement number is $0 x \mathrm{DD} 6$. What is its 1100 C
1101 D
1110 E
1111 F decimal representation?

$$
0 \times D 6=061101-0110
$$

(2) $1 x-128+1 \times 62^{7}+0 \times 12+1 \times 16+$
4. Using a 5 -bit two's complement representation, what is the range of integers that can be represented with a single 5 -bit quantity? $+(x 2+(x)=-42$
\rightarrow

$$
\begin{gathered}
1 \times 32+1 \times 8+1 \times 2 \\
=42
\end{gathered}
$$

5. Can the value of the sum of two 2 's complement numbers $0 \times B 3+0 \times 47$ be represented using an 8 -bit 2 's complement representation? If so, what is the sum in hex? If not, write NO. \star
6. Can the value of the sum of two 2 's complement numbers $0 \times \mathrm{xB} 3+0 \mathrm{xB} 1$ be represented using an 8 -bit 2 's complement representation? If so, what is the sum in hex? If not, write NO. *
7. Please compute the value of the expression $0 \mathrm{xBB}-8$ using 8 -bit two's complement arithmetic and give the result in decimal (base 10).
8. Consider the following subtraction problem where the operands are 5-bit two's complement numbers. Compute the result and give the answer as a decimal (base 10) number. \star

10101

- 00011

Problem 3. Multiples of 4

1. Given an unsigned n-bit binary integer $\boldsymbol{v}=\boldsymbol{b}_{\boldsymbol{n}-\mathbf{1}} \ldots \boldsymbol{b}_{\mathbf{1}} \boldsymbol{b}_{\mathbf{0}}$, prove that \boldsymbol{v} is a multiple of 4 if and only if $\boldsymbol{b}_{\mathbf{0}}=\mathbf{0}$ and $\boldsymbol{b}_{\mathbf{1}}=\mathbf{0}$.
2. Does the same relation hold for two's complement encoding?

Problem 4. Encoding text

There are multiple standards to encode characters and strings using binary values. ASCII is a classic standard to encode English alphabet characters (modern formats like UTF support other alphabets, but are typically based on ASCII). ASCII encodes each character using an 8-bit (1byte) value. The table below shows ASCII's mapping of characters to values.

	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
0	$\begin{aligned} & \text { NUL } \\ & 0 \times 00 \end{aligned}$	$\begin{gathered} \mathrm{SOH} \\ 0 \times 01 \end{gathered}$	$\begin{gathered} \text { STX } \\ 0 \times 02 \end{gathered}$	$\begin{gathered} \text { ETX } \\ 0 \times 03 \end{gathered}$	$\begin{gathered} \text { EOT } \\ 0 \times 04 \end{gathered}$	$\begin{gathered} \text { ENQ } \\ 0 \times 05 \end{gathered}$	$\begin{gathered} \text { ACK } \\ 0 \times 06 \end{gathered}$	$\begin{aligned} & \text { BEL } \\ & 0 \times 07 \end{aligned}$	$\begin{gathered} B S \\ 0 \times 08 \end{gathered}$	$\begin{gathered} \mathrm{HT} \\ 0 \times 09 \end{gathered}$	$\begin{gathered} \mathrm{LF} \\ 0 \times 0 \mathrm{~A} \end{gathered}$	$\begin{aligned} & \text { VT } \\ & 0 \times 0 \mathrm{~B} \end{aligned}$	$\begin{gathered} \mathrm{FF} \\ 0 \times 0 \mathrm{C} \end{gathered}$	$\begin{gathered} C R \\ 0 \times 0 D \end{gathered}$	$\begin{gathered} \mathrm{SO} \\ 0 \times 0 \mathrm{E} \end{gathered}$	$\begin{gathered} S I \\ 0 \times 0 \mathrm{~F} \end{gathered}$
1	$\begin{gathered} \text { DLE } \\ 0 \times 10 \end{gathered}$	$\begin{gathered} \text { DC1 } \\ 0 \times 11 \end{gathered}$	$\begin{gathered} \text { DC2 } \\ 0 \times 12 \end{gathered}$	$\begin{gathered} \text { DC3 } \\ 0 \times 13 \end{gathered}$	$\begin{gathered} \text { DC4 } \\ 0 \times 14 \end{gathered}$	$\begin{gathered} \text { NAK } \\ 0 \times 15 \end{gathered}$	$\begin{gathered} \text { SYN } \\ 0 \times 16 \end{gathered}$	$\begin{gathered} \text { ETB } \\ 0 \times 17 \end{gathered}$	$\begin{gathered} \text { CAN } \\ 0 \times 18 \end{gathered}$	$\begin{gathered} \text { EM } \\ 0 \times 19 \end{gathered}$	$\begin{gathered} \text { SUB } \\ 0 \times 1 \mathrm{~A} \end{gathered}$	$\begin{gathered} \text { ESC } \\ 0 \times 1 B \end{gathered}$	$\begin{gathered} F S \\ 0 \times 1 C \end{gathered}$	$\begin{gathered} \text { GS } \\ 0 \times 1 D \end{gathered}$	$\begin{gathered} R S \\ 0 \times 1 E \end{gathered}$	$\begin{gathered} \text { US } \\ 0 \times 1 F \end{gathered}$
2	$\begin{array}{\|c} \text { space } \\ 0 \times 20 \end{array}$	$\begin{gathered} ! \\ 0 \times 21 \end{gathered}$	0×22	$\begin{gathered} \# \\ 0 \times 23 \end{gathered}$	$\begin{gathered} \$ \\ 0 \times 24 \end{gathered}$	$\begin{gathered} \% \\ 0 \times 25 \end{gathered}$	$\begin{gathered} \& \\ 0 \times 26 \end{gathered}$	0×27	$\stackrel{(}{0 \times 28}$	$\begin{gathered} f \\ 0 \times 29 \end{gathered}$	$0 \times 2 \mathrm{~A}$	$\begin{gathered} + \\ 0 \times 2 \mathrm{~B} \end{gathered}$	$\begin{gathered} \prime \\ 0 \times 2 C \end{gathered}$	$0 \times 2 \mathrm{D}$	$0 \times 2 \mathrm{E}$	$\frac{/}{0 \times 2 F}$
3	$\begin{gathered} 0 \\ 0 \times 30 \end{gathered}$	$\begin{gathered} 1 \\ 0 \times 31 \end{gathered}$	$\begin{gathered} 2 \\ 0 \times 32 \end{gathered}$	$\begin{gathered} 3 \\ 0 \times 33 \end{gathered}$	$\begin{gathered} 4 \\ 0 \times 34 \end{gathered}$	$\begin{gathered} 5 \\ 0 \times 35 \end{gathered}$	$\begin{gathered} 6 \\ 0 \times 36 \end{gathered}$	$\begin{gathered} 7 \\ 0 \times 37 \end{gathered}$	$\begin{gathered} 8 \\ 0 \times 38 \end{gathered}$	$\begin{gathered} 9 \\ 0 \times 39 \end{gathered}$	$\begin{gathered} : \\ 0 \times 3 \mathrm{~A} \end{gathered}$	$\begin{gathered} i \\ 0 \times 3 B \end{gathered}$	$\begin{gathered} < \\ 0 \times 3 C \end{gathered}$	$0 \times 3 D$	$\begin{gathered} > \\ 0 \times 3 E \end{gathered}$	$\begin{gathered} ? \\ 0 \times 3 F \end{gathered}$
4	$\begin{gathered} @ \\ 0 \times 40 \end{gathered}$	$\begin{gathered} A \\ 0 \times 41 \end{gathered}$	$\begin{gathered} B \\ 0 \times 42 \end{gathered}$	$\begin{gathered} C \\ 0 \times 43 \end{gathered}$	$\begin{gathered} D \\ 0 \times 44 \end{gathered}$	$\begin{gathered} E \\ 0 \times 45 \end{gathered}$	$\begin{gathered} F \\ 0 \times 46 \end{gathered}$	$\begin{gathered} G \\ 0 \times 47 \end{gathered}$	$\begin{gathered} \mathrm{H} \\ 0 \times 48 \end{gathered}$	$\begin{gathered} I \\ 0 \times 49 \end{gathered}$	$\begin{gathered} J \\ 0 \times 4 A \end{gathered}$	$\begin{gathered} K \\ 0 \times 4 B \end{gathered}$	$\begin{gathered} L \\ 0 \times 4 C \end{gathered}$	$\begin{gathered} M \\ 0 \times 4 D \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 0 \times 4 \mathrm{E} \end{gathered}$	$\begin{gathered} 0 \\ 0 \times 4 \mathrm{~F} \end{gathered}$
5	$\begin{gathered} \mathrm{P} \\ 0 \times 50 \end{gathered}$	$\begin{gathered} Q \\ 0 \times 51 \end{gathered}$	$\begin{gathered} R \\ 0 \times 52 \end{gathered}$	$\begin{gathered} S \\ 0 \times 53 \end{gathered}$	$\begin{gathered} \mathrm{T} \\ 0 \times 54 \end{gathered}$	$\begin{gathered} \mathrm{U} \\ 0 \times 55 \end{gathered}$	$\begin{gathered} V \\ 0 \times 56 \end{gathered}$	$\begin{gathered} W \\ 0 \times 57 \end{gathered}$	$\begin{gathered} X \\ 0 \times 58 \end{gathered}$	$\begin{gathered} Y \\ 0 \times 59 \end{gathered}$	$\begin{gathered} Z \\ 0 \times 5 A \end{gathered}$	$\begin{gathered} {[} \\ 0 \times 5 B \end{gathered}$	$\frac{\backslash}{0 \times 5 C}$	$\begin{gathered}] \\ 0 \times 5 \mathrm{D} \end{gathered}$	$0 \times 5 \mathrm{E}$	0x5F
6	0×60	$\begin{gathered} a \\ 0 \times 61 \end{gathered}$	$\begin{gathered} \mathrm{b} \\ 0 \times 62 \end{gathered}$	$\begin{gathered} c \\ 0 \times 63 \end{gathered}$	$\begin{gathered} d \\ 0 \times 64 \end{gathered}$	$\begin{gathered} e \\ 0 \times 65 \end{gathered}$	$\begin{gathered} f \\ 0 \times 66 \end{gathered}$	$\begin{gathered} 9 \\ 0 \times 67 \end{gathered}$	$\begin{gathered} h \\ 0 \times 68 \end{gathered}$	$\begin{gathered} i \\ 0 \times 69 \end{gathered}$	$\begin{gathered} j \\ 0 \times 6 A \end{gathered}$	$\begin{gathered} k \\ 0 \times 6 B \end{gathered}$	$\begin{gathered} 1 \\ 0 \times 6 \mathrm{C} \end{gathered}$	$\begin{gathered} m \\ 0 \times 6 D \end{gathered}$	$\begin{gathered} n \\ 0 \times 6 \mathrm{E} \end{gathered}$	$\begin{gathered} 0 \\ 0 \times 6 \mathrm{~F} \end{gathered}$
7	$\begin{gathered} p \\ 0 \times 70 \end{gathered}$	$\begin{gathered} q \\ 0 \times 71 \end{gathered}$	$\begin{gathered} r \\ 0 \times 72 \end{gathered}$	$\begin{gathered} s \\ 0 \times 73 \end{gathered}$	$\begin{gathered} t \\ 0 \times 74 \end{gathered}$	$\begin{gathered} u \\ 0 \times 75 \end{gathered}$	$\begin{gathered} v \\ 0 \times 76 \end{gathered}$	$\begin{gathered} \text { w } \\ 0 \times 77 \end{gathered}$	$\begin{gathered} x \\ 0 \times 78 \end{gathered}$	$\begin{gathered} Y \\ 0 \times 79 \end{gathered}$	$\begin{gathered} z \\ 0 \times 7 A \end{gathered}$	$\begin{gathered} \{ \\ 0 \times 7 B \end{gathered}$	$\begin{gathered} \stackrel{1}{0 \times 7 C} \end{gathered}$	$\begin{gathered} \} \\ 0 \times 7 \mathrm{D} \end{gathered}$	$0 \times 7 E$	$\begin{gathered} \text { DEL } \\ 0 \times 7 \mathrm{~F} \end{gathered}$
	L	r	Nu		-	ctu		S	Ol	,	er/	-p	table			

Computers often store variable-length text as a null-terminated string: a sequence of bytes, where each byte denotes a different character, terminated by the value $0 x 00$ (null) to denote the end of the string. For example, the string " 6.004 " is encoded as the 6 -byte sequence $0 \times 360 \times 2 \mathrm{E} 0 \times 30$ $0 \times 300 \times 340 \times 00$. For brevity, we can also just stick these hex values together to form one large hex number: 0x362E30303400.

1. Encode your name as a null-terminated ASCII string (use the best approximation if your name contains non-English characters)
2. Decode the following null-terminated ASCII string:

0x 52495343 2D 562069732063 6F 6D 69 6E 672100

Problem 5. From Past Quizzes

(A) (2 points) What is the maximum decimal value that can be represented in 7-bit unsigned binary? What is the minimum decimal value that can be represented in 6-bit 2's complement?

Largest 7-bit unsigned binary (in decimal): \qquad
Smallest 6-bit 2's complement number (in decimal): \qquad
(B) (4 points) What is -25 in 7 -bit 2 's complement encoding? What is -40 in 7 -bit 2's complement encoding? Show how to compute -25-40 using 2's complement addition. Is it possible to represent the result in 7 -bit 2's complement encoding? If so, show your binary addition work and write the result in binary. If not, write "Not Possible" and explain why it's not possible.
-25 in 7-bit 2's complement notation (0b): \qquad
-40 in 7-bit 2's complement notation (0b): \qquad
-25-40 in 7-bit 2's complement notation or "Not Possible" (show your work)
(0b): \qquad

